Analysing the consistency of martian methane observations by investigation of global methane transport
نویسندگان
چکیده
Reports of methane on Mars at different times imply varying spatial distributions. This study examines whether different observations are mutually consistent by using a global circulation model to investigate the time evolution of methane in the atmosphere. Starting from an observed plume of methane, consistent with that reported in 2003 from ground-based telescopes, multiple simulations are analysed to investigate what is required for consistency with an inferred methane signal from the Thermal Emission Spectrometer made 60 sols later. The best agreement between the existing observations is found using continued release from a solitary source over Nili Fossae. While the peaks in methane over the Tharsis Montes, Elysium Mons and Nili Fossae regions are well aligned with the retrievals, an extra peak on the south flank of the Isidis basin is apparent in the model due to the prevailing eastward transport of methane. The absence of this feature could indicate the presence of a fast-acting localised sink of methane. These results show that the spatial and temporal variability of methane on Mars implied by observations could be explained by advection from localised time-dependent sources alongside a currently unknown methane sink. Evidence is presented that a fast trapping mechanism for methane is required. Trapping by a zeolite structure in dust particles is a suggested candidate warranting further investigation; this could provide a fast acting sink as required by this reconstruction. 2015 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http:// creativecommons.org/licenses/by/4.0/).
منابع مشابه
Numerical modelling of the transport of trace gases including methane in the subsurface of Mars
We model the transport of gas through the martian subsurface in order to quantify the timescales of release of a trace gas with a source at depth using a Fickian model of diffusion through a putative martian regolith column. The model is then applied to the case of methane to determine if diffusive transport of gas can explain previous observations of methane in the martian atmosphere. We inves...
متن کاملModelled isotopic fractionation and transient diffusive release of methane from potential subsurface sources on Mars
We calculate transport timescales of martian methane and investigate the effect of potential release mechanisms into the atmosphere using a numerical model that includes both Fickian and Knudsen diffusion. The incorporation of Knudsen diffusion, which improves on a Fickian description of transport given the low permeability of the martian regolith, means that transport timescales from sources c...
متن کاملAn Investigation of Martian Atmospheric Trace Species Using Laboratory and Computer-based Simulation
Introduction: The study of trace gas species in the Martian atmosphere has the potential to shed new light on wide-ranging topics such as the search for life and the history of liquid water on the planet. Investigating the way that molecules such as ozone, water and HCl are cycled in the atmosphere will give insights into the interactions taking place between the atmosphere, lithosphere and any...
متن کاملGcm Simulations of Martian Methane
Introduction: The spectroscopic detection of methane in the atmosphere of Mars is the first observation of an organic compound on that planet [1-3]. CH4 has a lifetime of a few centuries, which suggests a young or current source. On the other hand, this lifetime is long enough for the atmospheric circulation to yield a uniform distribution of CH4 across the planet, which is not what is observed...
متن کاملInvestigation of isomorph-invariance in liquid methane by molecular dynamics simulation
In this paper, isomorph invariance of liquid methane is investigated by means of constant-NVT molecular dynamics simulations. According to the data extracted from simulations, equilibrium fluctuations show strong correlation between potential energy U and virial W. We also generated isomorph state points and investigated invariance of certain thermodynamic, structural, and dynamical properties....
متن کامل